翻訳と辞書
Words near each other
・ Van den Hoek
・ Van den Hove
・ Van Den Spiegel
・ Van den vos Reynaerde
・ Van Denbergh-Simmons House
・ Van der Aa (disambiguation)
・ Van der Auwera
・ Van der Beek
・ Van der Bijl
・ Van der Boom
・ Van der Burg
・ Van der Burgh
・ Van der Byl
・ Van der Cammen
・ Van der Capellen Scholengemeenschap
Van der Corput lemma (harmonic analysis)
・ Van der Corput sequence
・ Van der Corput's method
・ Van der Does
・ Van der Duim
・ Van der Elst
・ Van Der Elst visa
・ Van der Ende
・ Van der Gaag
・ Van der Geest
・ Van der Giessen
・ Van der Giessen de Noord
・ Van der Graaf Generator
・ Van der Graaf Generator discography
・ Van der Grinten projection


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Van der Corput lemma (harmonic analysis) : ウィキペディア英語版
Van der Corput lemma (harmonic analysis)
In mathematics, in the field of harmonic analysis,
the van der Corput lemma is an estimate for oscillatory integrals
named after the Dutch mathematician J. G. van der Corput.
The following result
is stated by E. Stein:〔Elias Stein, ''Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals''. Princeton University Press, 1993. ISBN 0-691-03216-5〕
Suppose that a real-valued function \phi(x)\, is smooth in an open interval (a,b)\,,
and that |\phi^(x)|\ge 1 for all x\in (a,b).
Assume that either k\ge 2, or that
k=1\, and \phi'(x)\, is monotone for x\in\R.
There is a constant c_k\,, which does not depend on \phi\,,
such that
:
\Big|\int_a^b e^\Big|\le c_k\lambda^,

for any \lambda\in\R.
==Sublevel set estimates==

The van der Corput lemma is closely related to the sublevel set estimates
(see for example
〔M. Christ, ''Hilbert transforms along curves'', Ann. of Math. 122 (1985), 575--596〕),
which give the upper bound on the measure of the set
where a function takes values not larger than \epsilon\,.
Suppose that a real-valued function \phi(x)\, is smooth
on a finite or infinite interval I\subset\R,
and that |\phi^(x)|\ge 1\, for all x\in I.
There is a constant c_k\,, which does not depend on \phi\,,
such that
for any \epsilon\ge 0\,
the measure of the sublevel set
\
is bounded by c_k\epsilon^\,.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Van der Corput lemma (harmonic analysis)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.